
Laplace transform method for scattering on Coulomb plus nonlocal separable potentials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 1529

(http://iopscience.iop.org/0305-4470/16/7/029)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 1529-1537. Printed in Great Britain 

Laplace transform method for scattering on Coulomb plus 
nonlocal separable potentials 
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Department of Physics, Visva-Bharati University, Santiniketan 731235, West Bengal, 
India 

Received 29 October 1982 

Abstract. A Laplace transform method is derived to solve the Schrodinger equation for 
the Coulomb plus Tabakin potentials with the regular boundary condition. The results 
are used to construct expressions for on- and off-shell Jost functions in terms of Gaussian 
hypergeometric functions. 

1. Introduction 

The continuum solutions of the radial Schrodinger equation 

for the Coulomb plus finite-rank separable nucleon-nucleon potential have important 
applications in charged particle scattering. For example, non-relativistic models for 
proton-proton (pp) scattering have a short-range potential built in to account for the 
strong interaction, the Coulomb potential taking care of the charges. The object of 
the present paper is to develop a Laplace transform method to solve equation (1.1) 
for the regular boundary condition (Newton 1966) and use this solution to construct 
expressions for on- and off-shell Jost functions (Jost 1947, Fuda 1976). In equation 
(1.1) the two-body centre of mass energy E = k 2 ,  2 q k / r  is the Coulomb potential, q 
being the well known Sommerfeld parameter, and u ; ” ( r )  is the state-dependent form 
factor of the separable potential. The method proposed in this paper will work for 
arbitrary angular momentum and rank-N separable potentials. However, for clarity 
of presentation we specialise equation (1.1) to the s-wave case only and deal with (i) 
Coulomb plus rank-one and (ii) Coulomb plus rank-two Tabakin potentials (Tabakin 
1965, 1968). For the sake of brevity we omit the subscript I = 0 and work in units 
in which h 2 / 2 m  is unity. The reason for our interest in the Tabakin potentials is the 
following. The Tabakin potentials have been parametrised for the ‘So state. The 
s-wave pp scattering involves this state only, the triplet spin state being forbidden by 
the exclusion principle. 

0 1983 The Institute of Physics 
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2. Regular solutions 

Here we obtain the regular solution of equation (1.1). 
(i) For the rank-one Tabakin form factor 

u(r) = (A1 c o s a ~ r + A z s i n a l r ) e x p ( - a l r ) + A 3 e x p ( - a 2 r )  

the integrodifferential equation (1.1) reads 

(; iT+k2-- 4 (k ,  r )=d(k ) [A  exp(-pr)+A* exp(-P*r)+A3 exp(-azr)], 

where 

d(k)  = A  

with 

2.rlk) r 
dZ 

m 

[A exp(-ps) + A *  exp(-p*s)+A3 exp(-azs)]4(k, s) ds 
0 

A=i(A1-iA2),  p =cu l - i cu l .  

The asterisk stands for complex conjugation. We shall solve equation (2.2) by treating 
the integral (2.3) as a constant. The unknown constant which appears will be deter- 
mined by substituting the solution back in the defining equation for d(k)  and matching 
the desired boundary conditions (Talukdar et a1 1979, Talukdar and Das 1979). Using 
the transformations 

4 (k,  r )  = r eikrg(r), r = -z/2ik, (2.5) 

in equation (2.2) we get 

where 

P +ik p*+ik  a z + i k  
2ik ' 

c = 2 ,  a = 1+iv ,  P3=- (2.7) pz=- 2ik ' p1=- 2ik ' 

Equation (2.6) represents a non-homogeneous linear differential equation (Babister 
1967). Complementary functions of this equation are given by the confluent hyper- 
geometric functions 

and 

~ ( a , c ; n ) = z 1 - ' ~ ( a - c + ~ , 2 - c ; z ) .  (2.9) 

Clearly, for c = 2, equation (2.9) is not an acceptable solution of (2.6). However, it 
tends towards the solution (Erdelyi 1953) of (2.6) when c approaches 2. In our 
subsequent discussion we shall always mean that limit. This is no loss of generalisation 
(Newton 1966). 

Since confluent hypergeometric functions are of exponential order, and the RHS 
of (2.6) also is exponential, the Laplace transform method is expected to serve as one 
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of the best techniques to solve this. If Re c < 2 both parts of the complementary 
functions have transforms; if Re c 2 2 only one part has. Taking the Laplace transform 
of (2.6) we get 

d 
ds 
-{s(l-s)g(s)}+(cs - a ) g ( s )  = (c - 

(2.10) 

where g(s) =2'[g(z)]. This is a first-order differential equation in g(s) and can easily 
be solved to appear in the form 

dW 
+A* i," W a ( W  - l)'-"(w - p z )  

dw -%(A m 

2ik w a ( w  - l ) ' -"(W -p1 )  

(2.11) 

where R is a constant. The first two terms on the RHS of (2.11) give the complementary 
functions of (2.61, while the last three terms give the particular integrals. This can be 
shown as follows. 

Consider the standard integral 

+ 1) 
e-SZz"@(a,c;pz)dz =-2Fl(a, v + l ; c ; p / s )  (2.12) Jom S 

and the integral representation for the Gaussian hypergeometric function 

Combining (2.12) and (2.13) and using the transformation w = (s - r ) / ( l  - f ) ,  it is easy 
to see that 

(2.15) 

To deal with the last three terms in (2.11) we restrict ourselves to the half plane 
R e s  > R e p i  and R e s  >1 ,  i = 1 , 2 , 3 .  Thus 

dw dw 
(2.16) 

Allowing a + a  + n  + 1, c + c  i n  + 1 in (2.14) and using the series expansion of 
2 F 1 ( a , P ; ~ ; ~ ) , w e h a v e  
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where @,(a, c ;  z )  has been given in Babister (1967): 

In view of (2.14), (2.15) and (2.17) the inverse transform of (2.11) can be taken as 

(2.19) 

Note that for the regular boundary condition R = 0 and g(0) = 1. Combining (2.3), 
(2.5) and (2.18) we have 

, (2.20) 

where the Fredholm determinant associated with the regular solution for the Coulomb 
plus rank-one Tabakin potential is 

cc 
Dl(k )=  l+A 1 ( - l )"[A(p + i k ) " - ' + A * ( p * + i k ) " - ' + A ~ ( ~ ~ + i k ) " - ~ ]  

n = l  

l + i q  i n ,  1; n +l ; -  p -1k 

1 +iT + n ,  1; n + 1; ~ 

1 +iq + n ,  1; n + 1; - 

X 

A* 

A3 

+ 

a2 -2ik - ik >I + 
( a 2 - i k )  

(2.21) 

Thus the regular solution 

A [ A ( p - i k ) i n  d ( k ,  r )  = r e ikr@(l  +iv,  2; -2ikr) - 
2ikDl(k) p 2 + k 2  p + i k  

A* 

lkr  f &(l +iq,  2; -2ikr) 
X r e  (APT-' +A*p;-' +A3p;-l). (2.22) 

n = l  ( n  - l)! 

A couple of useful checks can be made on the fairly complicated expression (2.22). 
For example, in the absence of the nuclear potential (A = 0) equation (2.22) gives the 
solution for the pure Coulomb field (Newton 1966). In the absence of the Coulomb 
field (7 = 0) we have from (2.22) 

4 (k ,  r) = r elkr(l ,  2;  -2ikr)- A* A3 

Using the relations (Babister 1967) 

(2.23) 

@(I ,  2; z )  = e"2io(z/2), (2.24) 
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P"-' P"lZ"@(l, m + 2 ;  z ) ,  
oc 
1 emil,2;z)-= 5 ____ 

m = l  ( m  - l)! ,,,=I ( m  + l)! 

together with the integral representation 

(2.25) 

(2.26) 

it can be seen that d ( k ,  r )  in (2.23) is in exact agreement with that given by Bagchi 
er a1 (1977). 

(ii) For the rank-two Tabakin potential 

V(r ,  r ' )  = -g ( r )g ( r ' )+h ( r )h ( r ' )  

g i r )  = y e- -ar ,  
with 

h i r )  = P  e - h ' { [ ( d 2 - b 2 ~ / 2 d b ] s i n d r + c o s d r } ,  

the integrodifferential equation (1.1) reads 

( g + k  d2 2 - .%)d(k, r )  = d l ( k ) p [ B  exp( -a r )+B*  exp(-a*r)]-dz(k)y e-"', 
r 

where 
r x  

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

Following the same procedure as before, one can obtain the regular solution for the 
Coulomb plus rank-two Tabakin potential 

d t k , r ) = r  e I k r ( l + i q ,  2;  -2ikr)-(2ik)- ' r  elkr 

(2.34) 
with 

a +ik a * + i k  a +ik  
61 ==' 6 2 = x ,  5 3 = 2 i k .  (2.35) 

Using (2.34) in (2.31) and (2.32), and by solving the simultaneous equations for d l ( k )  
and dz (k ) ,  we get 

(2.36) 
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dz(k)  =L[-(*)i'{l 1 -/32B2X,,(a)-/32B*2Xn(a*) 
D 2 ( k )  a 2 + k 2  a + i k  

-p2BB*[Y,,(a, a * ) +  Y,,(a*, a ) ] }  

where the Fredholm determinant D 2 ( k )  associated with the regular solution for the 
Coulomb plus rank-two Tabakin potential is given by 

D2(k ) = [ 1 + y 'X,, (a )]{ 1 - 0 2B 2X,, (U ) - /3 2B *2Xn ( U  *) 

-p2BB*[Yn(a, a * ) +  Y,,(a*, a ) ] }  

+ v2B2{BY,,(a, a )  +B* Y,(a *, a )}[BY,(a, a )  + B* Y,,(a, a * ) ]  (2.38) 

with 

Y,,(x, y )  = 1 ( - 1 ) " ( x  +ik )"  1,2+i77 + n ;  n + 2 ;  - , (2.39) 

(2.40) 

Checks similar to those in (i) can also be made for the rank-two potential treated above. 

n = O  ( y  - ik )  -2ik) -1k 

33 

XnCx)= Yfl(x, x ) .  

3. Jost functions 

In terms of the regular solution of the Schrodinger equation, the s-wave on-shell 
(Newton 1966, de Alfaro and Regge 1965, Arnold and Seyler 1973) and off-shell 
(Fuda 1976) Jost solutions for the Coulomb plus rank-hi separable potentials are 
given by 

Here q is an off-shell momentum. Note that for Coulomb and Coulomb-like potentials 
(van Haeringen 1979) 

In the above the Coulomb Jost solution and Jost function are 

f'(k, r )  = (-2ik) en''2r e i k r q ( l  +iT,  2 ;  -2ikr), 

f ' ( k ) = e " " ' 2 / r ( ~ + i V ) ,  

with W a ,  c ;  z )  an irregular confluent hypergeometric function (Erdelyi 1953).  
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(i)  For the Coulomb plus rank-one Tabakin potential the on- and off-shell Jost 

(3.6) 

functions obtained from (2.22), (3.1) and (3.2) are 

f ( k  ) = f ' (  k ) - 2ik err"'2d ( k  )[AI (p  ) + A  *I  (6 *) +A 31 ( a d ] ,  

f ( k ,  q )  =f'(k, q ) + d i k ) ( - + y  A A* +-) A3 
p - i q  p*-iq a:!-iq 

CO i'-fl 

n + 1 
- 2 q k d ( k )  - [A(@ +ik)"-'+A*(p*+ik)"-'+A3(a2+ik)n-1] 

1 + i q  + n ,  1; n + 2 ;  - 2k )(k +q)- ' - l ,  
k + 4  

where the Coulomb off -shell Jost function 

T t k ,  4 )  = [ (k  + 4 ) / ( q  - k)l'" 

and 

r e-xr e ikrP( l  + iq ,  2;  -2ikr) dr  

1 - _ -  
2ikT(1 + i q ) ( x 2  + k 2 )  

(3.7) 

(3.8) 

(3.9) 

with y =tan- '  k/x, Bzl the Bernoulli numbers and (1, the logarithmic derivative of the 
gamma function. The result in (3.9) can be obtained by following the method given 
by Talukdar et a1 (1982). In order to transform the first integral on the RHS in (3.2) 
to more useful forms, it is necessary at this point to introduce explicitly into the 
integral a convergence factor e-sr. For all values of s such that Re  s + 0, the resulting 
integral is then uniformly convergent. The limit s + 0 is taken in the final answer, 
Also in deriving (3.7) we have used the following integral (Babister 1967): 

f V + i )  p' - - cAo+13F2(lr (T +a, t' +(T + 1; (T + 1, ( T + C ;  p / h )  (3.10) 
( T ( ( T + c - ~ )  A 

together with the reduction formula (Luke 1969) 

,Fq(ai, pi, T I , .  . . ; a 2 ,  pi, ~ 2 ,  * .  . ; z 1 = p - ~ E j  I ( & ' ,  TI,. . . a2, YZ, * * ; 2 ) .  (3.11) 

(ii)  Similarly for the Coulomb plus rank-two Tabakin potential, the on- and 

f ( k  ) = f'C k ) - 2ik en"/2{pdl(k ) [ B I ( a  1 + B * I ( a  *i] - ydz (k  ) I ( a  )} 

off-shell Jost functions obtained from (2.341, (3.1) and (3.2) are 

(3.12) 
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and 

- d Z ( k ) y ( a + i k ) " - 1 } 2 F l ( , l + i q + n ,  l ; n  + 2 : -  (3.13) 
k +4 

The Jost functions for the Coulomb plus Yamaguchi potential (Yamaguchi 1954) 
can be obtained from (3.6) and (3.7) as well as from (3.12) and (3.13) in the limits 
A 1, A z  + 0 and /3 + 0 respectively. 

Some comments on our results for the Coulomb plus rank-one Tabakin potential 
are now in order. The rank-one Tabakin potential supports a positive energy bound 
state in the absence of the Coulomb potential. For such a bound state the S matrix 
( = f ( - k ) / f ( k ) )  has a pole on the physical sheet. With the Coulomb potential turned 
on, this pole will move from the physical to the unphysical sheet. The positive energy 
bound state will be converted to a resonance. A detailed investigation of this point 
will be quite interesting. 

4. Discussion 

Experiments which involve scattering by additive interactions are analysed by the use 
of the Gell-Mann-Goldberger scattering-by-two-potentials theorem (GG theorem) 
(Gell-Mann and Goldberger 1953). Applicability of the GG theorem is directly related 
to the existence and/or completeness of the wave operators for the scattering system 
(Bajzer 1974). The wave operators exist under strong limits when each of the 
associated interactions is of short range, but they do not exist in the presence of a 
Coulomb force. To deal with long-range interactions, the wave operators are judi- 
ciously modified by relaxing some requirements. Recently, the situation with regard 
to this has been nicely summarised by Chandler 11981). 

In this paper we have solved the Schrodinger equation for the Coulomb plus 
Tabakin potentials for the regular boundary condition without using the GG theorem 
and used these results to construct analytical expressions for the on- and off-shell Jost 
functions. The hypergeometric functions which occur here can be generated by using 
a three-term recurrence relation given in Snow (1952). 

References 

de Alfaro V and Regge T 1965 Potenrial ycarieritig (Amsterdam: North-Hollandi 
Arnold L G and Seyler R G 1973 Phys. R e v .  C 7 574 
Babister A W 1967 Transcetidenial firncriotis sarisfving nonhomogeneous linear differenrial eqitarions ( N e w  

Bagchi B, Krause T 0 and Mulligan B 1977 Phys. Rep .  C 15 1623 
Bajzer Z 1974 Nuoco Cimenro 22A 300 
Chandler C 1981 Nitcl. Phys. A 353 129c 
Erdelyi A 1953 Higher rranscetidenral fitnl-rions ~ o 1  1 (New York :  McGraw-Hill) 
Fuda M G 1976 Phys. R e v .  C 14 37 

York: MacMillan~ 



Scattering on Coulomb plus nonlocal separable potentials 1537 

Gell-Mann M and Goldberger M L 1953 Phys. Rec. 91 398 
van Haeringen H 1979 J. Math.  Phys. 20 1109 
Jost R 1947 Helc. Phys. Acta 20 256 
Luke Y L 1969 The special functions and their approximations vol 1 (New York: Academic) 
Newton R G 1966 Scattering theory of waces mid parricles (New York: McGraw-Hill) 
Snow C 1952 N .  B. S.  ( U S )  Appl .  Math.  Series 19 (Washington DC: US Govt Printing Office) 
Tabakin F 1965 Phys. Rev. 173 B75 
- 1968 Phys. Rec. 174 1208 
Talukdar B and Das U 1979 Pramana 13 525 
Talukdar B, Das U and Chakravarty S 1979 Phys. Rec. C 19 322 
Talukdar B, Ghosh D K and Sasakawa T 1982 J. Math.  Phys. 23 1700 
Yamaguchi Y 1954 Phys. Rev. 95 1628 


